Mappa Moduli

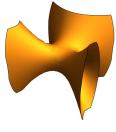
Singularities, Surfaces, and Symplectic Topology

Jonny Evans

31st October 2018

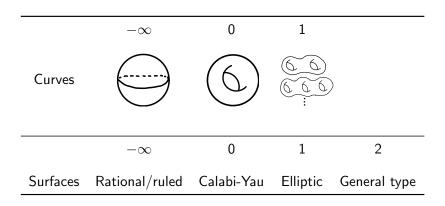
Varieties

A *variety* is a space cut out by polynomial equations.

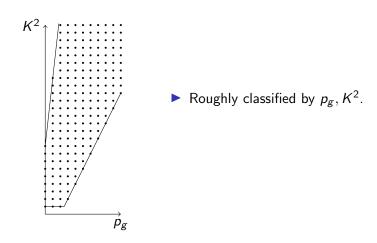


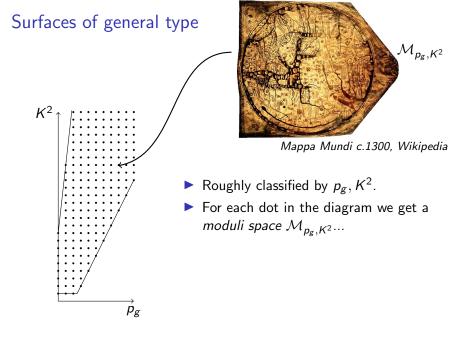
$$x^2y = y^3 + z^2 + 1$$

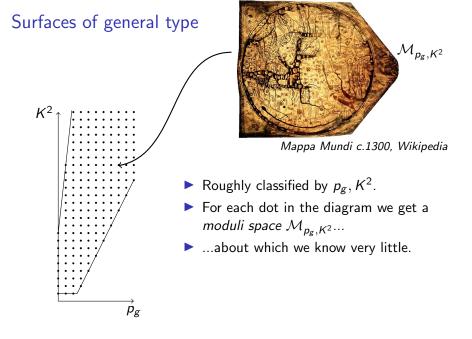
Classifying varieties



Surfaces of general type







Some things we don't know about $\mathcal{M}_{p_{g},K^{2}}$

- Dimension.
- Number of components.
- ▶ What happens at the boundary?

$$x^2y = y^3 + z^2 + 1$$

$$x^2y = y^3 + z^2 + 0.5$$

$$x^2y = y^3 + z^2 + 0.1$$

$$x^2y = y^3 + z^2 + 0.01$$

...and may develop singularities when it reaches the boundary.

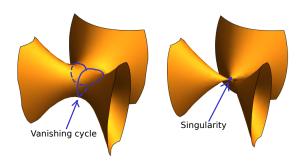
$$x^2y = y^3 + z^2 + 0$$

Question

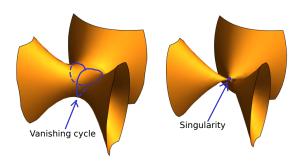
What singularities appear for varieties at the boundary of \mathcal{M}_{p_g,K^2} ?

Past work on this problem

Vanishing cycles



Vanishing cycles



Strategy

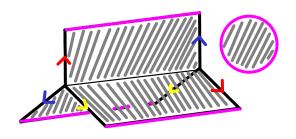
If smooth variety does not contain the required vanishing cycle then the corresponding singularity cannot appear.

Example: Wahl singularities

Fix
$$p \ge q \ge 1$$
 with $gcd(p, q) = 1$

$$W_{p,q} = \mathbb{C}^2/\sim, \qquad (x,y) \sim (\mu x, \mu^{pq-1}y), \ \mu^{p^2} = 1.$$

- ▶ Occur frequently at the boundary of $\mathcal{M}_{p_{\alpha},K^2}$.
- ▶ The vanishing cycle is a Lagrangian pinwheel $L_{p,q}$.



Wahl singularities and **CP**²

Theorem (Evans-Smith 2018, Geometry & Topology)

If $L_{p_1,q_1},\ldots,L_{p_n,q_n}$ are pairwise disjoint Lagrangian pinwheels in ${\bf CP}^2$ then $n\leq 3$. If n=3 then

$$p_1^2 + p_2^2 + p_3^2 = 3p_1p_2p_3.$$

Wahl singularities and **CP**²

Theorem (Evans-Smith 2018, Geometry & Topology)

If $L_{p_1,q_1},\ldots,L_{p_n,q_n}$ are pairwise disjoint Lagrangian pinwheels in ${\bf CP}^2$ then $n\leq 3$. If n=3 then

$$p_1^2 + p_2^2 + p_3^2 = 3p_1p_2p_3.$$

 Corresponding constraint on singularities was proved using algebro-geometric methods earlier (Hacking-Prokhorov 2005).

Question (Kollár, Shepherd-Barron 1988)

Fix p_g , K^2 . Is there a bound on p such that the Wahl singularity $W_{p,q}$ can appear at the boundary of \mathcal{M}_{p_g,K^2} ?

Question (Kollár, Shepherd-Barron 1988)

Fix p_g , K^2 . Is there a bound on p such that the Wahl singularity $W_{p,q}$ can appear at the boundary of \mathcal{M}_{p_g,K^2} ?

► Alexeev 1994: Yes.

Question (Kollár, Shepherd-Barron 1988)

Fix p_g , K^2 . Is there a bound on p such that the Wahl singularity $W_{p,q}$ can appear at the boundary of \mathcal{M}_{p_g,K^2} ?

► Alexeev 1994: Yes.

No explicit bound.

Question (Kollár, Shepherd-Barron 1988)

Fix p_g , K^2 . Is there a bound on p such that the Wahl singularity $W_{p,q}$ can appear at the boundary of \mathcal{M}_{p_g,K^2} ?

Alexeev 1994: Yes.

No explicit bound.

► Alexeev-Mori 1995: Explicit bound.

Question (Kollár, Shepherd-Barron 1988)

Fix p_g , K^2 . Is there a bound on p such that the Wahl singularity $W_{p,q}$ can appear at the boundary of \mathcal{M}_{p_g,K^2} ?

- Alexeev 1994: Yes.
- Alexeev-Mori 1995: Explicit bound.

No explicit bound.

"It has to be admitted, however, that these bounds are quite high."

Question (Kollár, Shepherd-Barron 1988)

Fix p_g , K^2 . Is there a bound on p such that the Wahl singularity $W_{p,q}$ can appear at the boundary of \mathcal{M}_{p_g,K^2} ?

- Alexeev 1994: Yes.
- ► Alexeev-Mori 1995: Explicit bound.
- Lee 1999: $\ell \le 400(K^2)^4$.

No explicit bound.

"It has to be admitted, however, that these bounds are quite high."

Question (Kollár, Shepherd-Barron 1988)

Fix p_g , K^2 . Is there a bound on p such that the Wahl singularity $W_{p,q}$ can appear at the boundary of \mathcal{M}_{p_g,K^2} ?

- Alexeev 1994: Yes.
- ► Alexeev-Mori 1995: Explicit bound.
- Lee 1999: $\ell \le 400(K^2)^4$.

No explicit bound.

"It has to be admitted, however, that these bounds are quite high."

$$\frac{p^2}{pq-1} = b_1 - \frac{1}{b_2 - \frac{1}{\cdots - \frac{1}{b_\ell}}}$$

Question (Kollár, Shepherd-Barron 1988)

Fix p_g , K^2 . Is there a bound on p such that the Wahl singularity $W_{p,q}$ can appear at the boundary of \mathcal{M}_{p_g,K^2} ?

- Alexeev 1994: Yes.
- Alexeev-Mori 1995: Explicit bound.
- ▶ Lee 1999: $\ell \le 400(K^2)^4$.

No explicit bound.

"It has to be admitted, however, that these bounds are quite high."

$$rac{p^2}{pq-1} = b_1 - rac{1}{b_2 - rac{1}{\cdots - rac{1}{b_{\ell}}}}$$

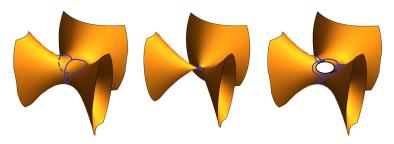
Theorem (Evans-Smith 2017)

If
$$p_g > 0$$
 then $\ell \le 4K^2 + 7$.

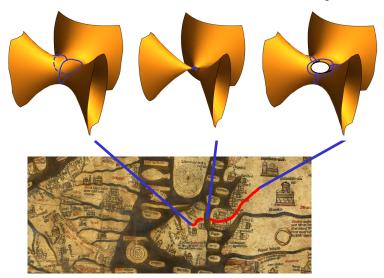
Proof uses pseudoholomorphic curves and Seiberg-Witten theory.

Ongoing projects exploring moduli space

Some singularities can be smoothed in multiple ways...

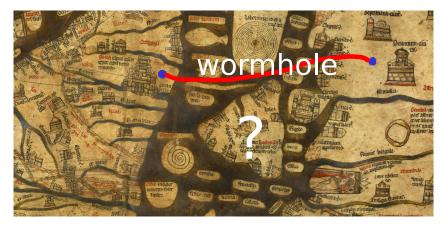


...giving "wormholes" between distant points of \mathcal{M}_{p_g,K^2} .



Question

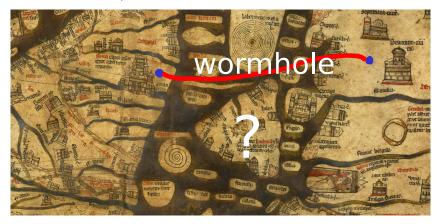
When do wormholes connect different components of $\mathcal{M}_{p_{\sigma},K^2}$?



Question

When do wormholes connect different components of $\mathcal{M}_{p_{\sigma},K^2}$?

➤ *Strategy:* If the topology changes then the wormhole connects different components.

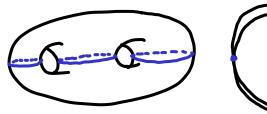


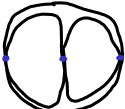
Large complex structure limits

Wahl singularities are (in a sense) the mildest singularities at the boundary of the moduli space.

Question

What are the most singular surfaces that occur?



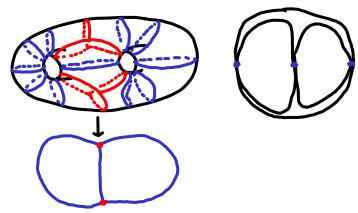


Large complex structure limits

Wahl singularities are (in a sense) the mildest singularities at the boundary of the moduli space.

Question

What are the most singular surfaces that occur?

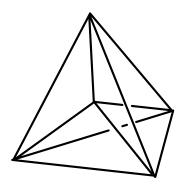


Large complex structure limits

Question

What are the *most singular* surfaces that occur?

- Does this yield Lagrangian torus fibrations on surfaces of general type?
- Can we use this to understand their geometry?



- Base of Lagrangian torus fibration on a quintic surface.
- There are four "holes" because $p_g = 4$.

Summary

- ▶ Surfaces of general type form a moduli space \mathcal{M}_{p_g,K^2} .
- Constraints on Wahl singularities:
 - ▶ for degenerations of **CP**² (Markov equation),
 - for surfaces at the boundary of moduli space $(\ell \le 4K^2 + 7)$.
- Can we use topological transitions to find new components of moduli space?
- ► Can we use large complex structure limits to find Lagrangian torus fibrations on surfaces of general type?