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ETH Zürich

3rd February 2012
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I would like to thank the organisers for the opportunity to speak here, at
the sixth Workshop on Symplectic Geometry, Contact Geometry and
Interactions. I would also like to thank the organisers of the previous five
workshops. This series began the year I started my PhD so I have grown
up with this wonderful opportunity to learn and to meet other
mathematicians. So thank you, your hard work is much appreciated.
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Today I want to introduce you to some unusual symplectic manifolds.
They are very easy to describe:

Z = Γ\SO+(2n, 1)/U(n)

as quotients of homogeneous spaces by cocompact torsionfree lattices. Of
course finding such a lattice in SO+(2n, 1) is a nontrivial problem we will
not concern ourselves with, but rest assured that they exist (there are
infinitely many arithmetic examples).
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The structure of these spaces becomes more apparent if we notice that we
can quotient out on the right by a bigger group SO(2n) ⊃ U(n):

τ : Z = Γ\SO+(2n, 1)/U(n)→ Γ\SO+(2n, 1)/SO(2n) = M

The fibre of this projection is just the quotient F = SO(2n)/U(n). On the
right-hand side we have a compact quotient of SO+(2n, 1)/SO(2n) but
that’s just hyperbolic space H2n, so the target of this projection is a
hyperbolic 2n-manifold. The total space Z is therefore an
SO(2n)/U(n)-bundle over the hyperbolic manifold M.
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We can see immediately from the homotopy long exact sequence of this
fibration that

Γ = π1(M) ∼= π1(Z )

so that the spaces Z have the fundamental group of a hyperbolic
2n-manifold. Using the theory of harmonic maps one can prove:

Theorem (Carlson-Toledo)

No compact Kähler manifold can have the fundamental group of a
hyperbolic m-manifold if m > 2.

Corollary

The manifolds Z are non-Kähler (when n > 1).
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You can easily calculate the dimension of Z :

dim(Z ) = dim(F ) + dim(M) = n(n − 1) + 2n = n(n + 1)

Moreover we can understand the fibre thanks to the accidental
isomorphisms in low-dimensions:

SO(2)/U(1) = {?}
SO(4)/U(2) = CP1

SO(6)/U(3) = CP3

SO(8)/U(4) = quadric 6-fold
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The spaces Z are a special case of a more general construction: the
twistor bundle. I’ll explain this in its full generality, then return to
hyperbolic manifolds later.

Definition

Given a Riemannian (M, g) the twistor bundle Z is just the bundle
τ : Z → M whose fibre at p is the space of gp-orthogonal complex
structures on TpM. A complex structure ψ on a Euclidean vector space is
orthogonal if

gp(ψV , ψW ) = gp(V ,W ).

Don’t get confused. M doesn’t have to be almost complex: an orthogonal
almost complex structure on M, if it exists, is a section of the twistor
bundle.

I’ll now define some geometric structures on the twistor space of a general
Riemannian manifold.
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Z sits inside the bundle End(TM) and it is preserved by the Levi-Civita
connection. Therefore TZ gets a horizontal-vertical decomposition

TψZ = Hψ ⊕ Vψ

with H ∼= τ∗TM and Vψ = TψF , F being the fibre through ψ.

Since F is a homogeneous space it has a natural
SO(2n)/U(n)-invariant Kähler structure (ωF , jF , gF ).

H has a tautological almost complex structure: a point ψ in Z
defines a complex structure ψ on TpM (where p = τ(ψ)) and hence

on the horizontal space Hψ
τ∗∼= TpM. We call this tautological a.c.s ψ.

We can also pull back the metric g to H and since g and ψ are
orthogonal they define for us a compatible 2-form ωψ on H.
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Putting all this together, using the splitting TZ = H⊕ V we have:

a metric g = τ∗g ⊕ gF ,

two almost complex structures J± = ψ ⊕ (±jF ),

two nondegenerate 2-forms ω± = ωψ ⊕ (±ωF ) compatible with J±
respectively.

Despite the apparent simplicity of the definition, the 2-forms ω± are
usually not closed. This is because the distribution H is usually not
integrable.
Similarly, J± are usually not integrable.

Proposition

J+ is integrable if and only if (M, g) is either 4-d and self-dual or
higher-dimensional and conformally flat. J− is never integrable.
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Reznikov (1993) defined another 2-form ωrez which is always closed, but
not always nondegenerate...
Recall that the Riemann curvature tensor can be thought of as a map

R̂ : Λ2TM → Λ2TM

(this is just a rephrasing of the antisymmetries of Rijkl). Reznikov’s form is

ωrez = −R̂(ωψ)⊕ (−ωF )

Note that when M is hyperbolic R̂ = −1 so

Proposition

When (M, g) is hyperbolic, ωrez = ω− is a J−-compatible symplectic form.
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Theorem (Reznikov (1993), Fine-Panov (2009))

(Reznikov) When g is sufficiently negatively curved (e.g. pinched
curvature) ωrez is symplectic.

(Fine-Panov) When g is hyperbolic, c1(Z , J−) = (n− 2)[ωrez], so Z is
symplectic Calabi-Yau when n = 2 and symplectic Fano when n ≥ 3.

Henceforth we restrict attention to the twistor spaces of hyperbolic
manifolds, which have the homogeneous space description I began with

Γ\SO+(2n, 1)/U(n)

I will also assume n = 3 for simplicity, so these are CP3-bundles over
hyperbolic 6-manifolds.
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These are extremely unusual symplectic Fano 12-manifolds. Let’s contrast
them with complex projective Fano varieties

Fano varieties are simply-connected. The spaces Z have hyperbolic
fundamental groups.

In each dimension there are only finitely many diffeomorphism types
of Fano variety. There are infinitely many arithmetic lattices one can
pick for Γ t give infinitely many non-diffeomorphic Z .

Fano varieties have lots of holomorphic curves. In particular, given
any two points one can find a stable holomorphic genus 0 curve
passing through them (they are rationally connected). By contrast,
we will see that, in Z , given points in different fibres F there are no
J−-holomorphic curves connecting them.

This is all the more surprising when we remember that Taubes/Li-Liu
proved that any symplectic Fano 4-manifold is deformation equivalent to a
Fano surface. The same is clearly not true in dimension 12.
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However, there are some properties these spaces share in common with
Fano varieties.

Theorem (E. ’11)

Let Z be the twistor space of a compact orientable hyperbolic 6-manifold.

Z is uniruled, i.e. for any ω−-compatible a.c.s. J there is a
J-holomorphic genus 0 curve through every point.

The quantum cohomology of Z contains an invertible element in
degree 2.

Indeed the quantum cohomology ring is

QH(Z ;C(q)) = H∗(M;C[q])[α]/(α4 = 8ατ∗χ+ 8qα2 − 16q2)

where α = c1(Z ) and χ is the Euler class of TM.

The existence of an invertible element in degree 2 certainly feels very
Fano-like (like the hyperplane in CPn). One can deduce from this
corollaries such as: any aspherical Lagrangian in Z has minimal Maslov
number 2 (using Damian’s proof of the Audin conjecture).
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I want to prove uniruledness. To do this, we need to get a feel for the
J−-holomorphic curves in Z .

Theorem (Eells-Salamon (1985) twistor correspondence)

Let Z be the twistor space of ANY Riemannian 2n-manifold. A
J−-holomorphic curve u : Σ→ Z projects to either a point or a branched
minimal immersion of Σ in M and any branched minimal immersion has a
J−-holomorphic curve living over it.

Now when M is hyperbolic, π2(M) = 0 and so any map S2 → M is
nullhomotopic. Now a branched minimal immersion is a harmonic map,
but the harmonic map energy is convex on the space of maps into a
negatively curved manifold (that’s why there’s a unique closed geodesic in
each homotopy class on a hyperbolic manifold) so there is an essentially
unique harmonic map of the sphere into M, namely the constant map!

Corollary

All J−-holomorphic curves in the twistor space of a hyperbolic manifold
live in the fibres of the twistor fibration.
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We see at once that the twistor space of a hyperbolic manifold is not
rationally connected. However, we do see a J−-holomorphic sphere
through every point: every point is contained in some fibre which is just
CP3 with its standard complex structure. To prove uniruledness we need
to show that there is a non-vanishing Gromov-Witten invariant counting
curves passing through a fixed point, i.e. that the evaluation map

ev : M0,1(β, J)→ Z

(for genus 0 curves in some class β ∈ H2(Z ;Z)) has nonzero degree for
some generic J. The problem is that J− is not generic. The moduli spaces
of J−-holomorphic curves have the wrong dimension. Let’s see this for
lines in CP3 (twistor lines). The expected dimension for the moduli space
M0,1(β, J) is

2n + 2c1(β)− 6 + 2

We have c1(β) = 2 and n = 6 so we get the expected dimension being 12.
However there is a CP2 of lines through every point (and there are 12
dimensions of points) so the moduli space M0,1(β, J−) has dimension 16.
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However, the moduli space is clearly compact (these are minimal area
spheres) and smooth. Moreover you can check that its tangent spaces are
equal to the kernels of the linearised ∂J−-operator. That is to say: over a
suitable Banach space B of maps u : S2 → Z representing the homology
class β there is a section ∂J−(u) of the Banach bundle Ω0,1

J−
(S2, u∗TZ )

(measuring the failure of u to be J−-holomorphic) and that section
vanishes cleanly1, rather than transversely. Checking this requires solving a
linear elliptic PDE and amounts to nothing more than an application of
the maximum principle.

Proposition (McDuff-Salamon, Proposition 7.2.3)

When ∂J vanishes cleanly and the moduli space is compact the
Gromov-Witten class is

ev∗PD(eul(Obs))

where Obs is the obstruction bundle, a vector bundle built out of the
cokernels of the linearised ∂J -operators.

1i.e. the section intersects the zero-section cleanly, i.e. the tangent spaces of
the intersection are the intersections of the tangent spaces.
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Again we can easily solve for the kernel of the adjoint of the linearised
∂J -operator (which is the fibre of the obstruction bundle). It turns out that
given a vector V ∈ TpM one can construct an element σV ∈ Obsu for any
curve u whose image is contained in the twistor fibre at p. The element of
Obsu only depends on the projection of V to some 4-dimensional
subspace, since we know that Obsu is a rank 4 vector bundle (the expected
and actual dimensions differ by 4). To understand what this vector bundle
is, we give a different description of the moduli space of twistor lines.
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Recall that SO(4)/U(2) ∼= CP1. Note that this is diffeomorphic to
SO(4)× SO(2)/U(2)× U(1), which parametrises orthogonal complex
structures on a 6-dimensional vector space for which some fixed 4-plane is
complex, hence it is a subset of SO(6)/U(3), the twistor fibre. Indeed, it
is precisely a complex line in CP3. The moduli space of complex lines in
CP3 is therefore identified with the space of 4-planes in R6 and,
reassuringly there are U(3)/U(2)× U(1) = CP2 of them through every
point. Moreover, the element σV ∈ Obsu only depends on the projection
of V to the 4-plane corresponding to u. This implies:
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Proposition

The moduli space of twistor lines in Z is

M0,0(β, J−) = Γ\SO+(6, 1)/SO(4)× SO(2)

or
M0,1(β, J−) = Γ\SO+(6, 1)/U(2)× U(1)

where the evaluation map to Γ\SO+(6, 1)/U(3) is precisely the map
induced by the inclusion U(2)× U(1)→ U(3). Moreover the obstruction
bundle is the canonical SO(4)-bundle (resp. U(2)-bundle).
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The theorem on obstruction bundles now tells us to fibre-integrate the
Euler class of this U(2)-bundle (i.e. its second Chern class) along the
evaluation map. This corresponds to integrating

ev!c2 = [Z ] ·
∫
CP2

c2 = [Z ]

in each fibre and the answer is just [Z ], i.e. for a generic J the evaluation
map has degree 1, proving uniruledness.
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Higher degree curves may contribute to the 3-point Gromov-Witten
invariants and for these the moduli spaces are not compact. Nonetheless,
it turns out that for all the 3-point calculations involved in the quantum
product one can, using a well-chosen vector field on M, construct a
nonvanishing element of Obsu for all u in all strata of the moduli space. If
one employs the theory of Kuranishi structures, this is certainly enough to
ensure the contribution vanishes, but given we are in a monotone setting I
wanted to appeal only to the standard (Ruan-Tian/McDuff-Salamon)
theory of curves in monotone manifolds. One must carefully prove a
version of the obstruction bundle theory (using the implicit function
theorem and gluing) in this setting and the result is that the higher degree
curves do not contribute to the 3-point Gromov-Witten invariants.
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I want to finish by introducing some beautiful monotone Lagrangian
submanifolds LΣ ⊂ Z . These were discovered by Reznikov (1993).

Definition (Reznikov Lagrangians)

Let Σ ⊂ M be a totally geodesic submanifold of dimension n (half the
dimension of M). The subset LΣ ⊂ τ−1(Σ) consisting of complex
structures ψ such that ψ(T Σ) ⊥ T Σ is a Lagrangian submanifold of Z ,
diffeomorphic to the frame bundle of Σ. When n ≥ 3 these are monotone
Lagrangians.

A similar argument with the Eells-Salamon twistor correspondence shows
that all holomorphic discs with boundary on LΣ are vertical (contained in
twistor fibres) and in the case n = 3, LΣ ∩ F = SO(3) = RP3 ⊂ CP3.
Analogous calculations to those with the holomorphic spheres imply that
there are two Maslov 2 holomorphic discs through every point (they’re
Lagrangian uniruled) and that the self-Floer cohomology is H∗(L) (with
suitable Novikov coefficients).
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There is a folklore theorem inspired by mirror symmetry (proved in the
monotone toric case by Auroux) that the number µ0 which counts Maslov
2 discs (suitably weighted by areas and holonomies of a local system)
through a point of a Lagrangian with non-vanishing self-Floer cohomology
also arises as an eigenvalue for the action of c1(Z ) on QH(Z ) by quantum
product. If one uses the presentation of the quantum cohomology ring I
gave earlier then one sees that these eigenvalues are ±2

√
q (which indeed

arise as the counts of discs on Reznikov Lagrangians equipped with
different spin structures) and the roots of the equation

λ4 − 8qλ2 − 8χ(M)λ+ 16q2

It would be intriguing to find (or rule out) Lagrangians corresponding to
these eigenvalues.
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For example, when M = S6 the twistor space is
SO(7)/U(3)→ SO(7)/SO(6) but SO(7)/U(3) is a quadric 6-fold (it’s the
same as SO(8)/U(4)!). There are plenty of Reznikov Lagrangians (e.g.
over equatorial S3s) but there is also a Lagrangian 6-sphere which predicts
diffeomorphically to the base (I think this is just G2/SU(3), but I haven’t
checked). Our conjectural Lagrangians have to see the whole base
somehow (its Euler class pops up in their disc counts) but they cannot be
sections as the base is hyperbolic and the total space is uniruled (this
would contravene a theorem of Viterbo/Eliashberg).
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