1.04 Examples and simply-connectedness
Below the video you will find accompanying notes and some pre-class questions.
- Previous video: 1.03 Concatenation and the fundamental group.
- Next video: 1.05 Basepoint dependence.
- Index of all lectures.
Notes
Examples
- (0.21) We saw in the previous video that all loops based at \(0\) in \(\mathbf{R}^n\) are based homotopic to the constant loop, so \(\pi_1(\mathbf{R}^n,0)\cong\{1\}\) (i.e. it is the trivial group).
- (0.54) Let \(S^1\) denote the unit circle in \(\mathbf{C}\). The
fundamental group \(\pi_1(S^1,1)\) is isomorphic to the integers
\(\mathbf{Z}\): the homotopy class of a loop is determined by the
number of times it winds around the circle. We will prove this
later: for now, you will need to take it on trust.
Simply-connected spaces
Fundamental group of the 2-sphere
(7.38) Let \(S^2=\{(x,y,z)\in\mathbf{R}^3\:\ x^2+y^2+z^2=1\}\) be the unit sphere in \(\mathbf{R}^3\); since points on the sphere can be specified by two coordinates (latitude and longitude), we say that the sphere is 2-dimensional. Let \(N,S\) be the North and South poles respectively.
- If \(\gamma(t)\neq N\) for all \(t\in[0,1]\) then \(\gamma\) is contractible. This is because \(S^2\setminus\{N\}\) is homeomorphic to the plane via stereographic projection and every loop in the plane is contractible (as we saw here).
- If \(\gamma\) passes through the North pole then we can find a homotopic loop which misses the North pole (which then implies that \(\gamma\) is nullhomotopic, by the first point).
(16.20) Whenever \(\gamma_i\) has image in \(U\), we will replace the subpath \(\gamma_i\) with a homotopic path disjoint from \(N\) (the subpaths which are contained in \(V\) automatically miss \(N\)). To that end, pick* any path \(\delta_i\) in \(U\setminus\{N\}\) from \(\gamma(t_i)\) to \(\gamma_{t_{i-1}}\).
(18.40) By the lemma above, \(\gamma_i\simeq\delta_i\) (i.e. these paths are homotopic in \(U\) with fixed endpoints) since the disc \(U\) is simply-connected. Therefore, replacing each \(\gamma_i\) with \(\delta_i\) we get a homotopic path which avoids the North pole.
(20.00) *The reason we can find \(\delta_i\) is because \(U\setminus\{N\}\) is path-connected (see here).
Pre-class questions
- What about the unit sphere \(S^n=\{(x_0,\ldots,x_n)\in\mathbf{R}^{n+1}\ :\ \sum_{k=0}^n x_k^2=1\}\) in higher dimensions? Is it simply-connected?
- What about the unit circle \(S^1=\{(x,y)\in\mathbf{R}^2\ :\
x^2+y^2=1\}\) in two dimensions?
Navigation
- Previous video: 1.03 Concatenation and the fundamental group.
- Next video: 1.05 Basepoint dependence.
- Index of all lectures.